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ABSTRACT

This thesis explores the effects of mosaic graphite on the yield of parametric x-radiation
(PXR). PXR is the Bragg scattering of virtual photons associated with the Coulombic field of
relativistically charged particles interacting with the atomic planes of a crystal. PXR was
measured from three samples of mosaic graphite crystals with differing mosaicities. The
number of photons per electron was calibrated with the fluorescent x-ray yield from a thin
silver foil backing on each of the mosaic crystals. The detector angular field of view was
narrowed from previous experiments. Improvements were made in the re-analysis of previous
experiments by considering the thick target effects of the x-ray absorption. Previous
experiments had erroneously assumed that the calibration fluorescent targets were thin. Re-

analysis of previous data using corrections for solid angle, crystal absorption factors and

effective thickness resulted in yields similar to those obtained in this work.
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I. INTRODUCTION

Parametric x-radiation (PXR) results from charged particle refraction through a
crystalline material. PXR can be interpreted as the coherent Bragg scattering of virtual
photons associated with the electric field of a relativistic charged particle passing through
a crystal. [Ref. 1] From this process, these diffracted virtual photons appear as a
uniquely shaped x-ray beam that is generated about the Bragg angle measured relative to
the velocity vector of the charged particle. A polarized radiation pattern of PXR from a

silicon crystal is shown in the following figure [Ref. 20]:

Figure 1: Polarized Radiation Pattern from 230 MeV Electrons Interacting

with the (022) Planes of a 20 um Thick Silicon Crystal Target at a Bragg
Angle of 45 Degrees

The PXR theory was developed by Ter-Mikaelian (1971) as resonant radiation that is
produced in a thin crystal (absorption could be neglected). [Ref. 2] Experimental
confirmation of the theory was made by Baryshevsky in 1985. [Ref. 3] Starting in the

early 1990°s the first PXR experiments outside of the former Soviet Union began at the



Naval Postgraduate School (NPS), Monteréy, California. These experiments were
conducted at the Naval Postgraduate School electron linear accelerator (LINAC) to
explore the basic properties of PXR in order to assess its potential application as a
compact tunable x-ray source. [Ref. 4] It has been shown that PXR is a tunable source.
Rotating the target crystal, in order to change the target orientation relative to an incident
95 MeV electron beam, resulted in narrow bandwidth x-rays with multiple order energies.
The type of crystal selected, Bragg angle, angular aperture and electron beam parameters
determines the PXR energy, yield measurements as well as bandwidth.

Recent theoretical work on photon yields due to the influence of mosaic spread has
been done by Rule et al at the Naval Warfare Center in Silver Spring, Maryland. [Ref. 5]
In a perfect crystal, where mosaicity is zero, the arrangement of the atoms is identical
throughout the material. Thus, the mosaic spread (or mosaicity) of a non-perfect crystal
has an effect on the photon yield. The theory attempts to explain the discrepancies seen
between previous experiments and theories. Initial experimental work to verify the
theory was conducted by DiNova at the NPS LINAC on a thick mosaic graphite crystal
with a mosaicity of 0.45 degrees. [Ref. 6] Additional experiments were conducted by
Buckingham and Ivey using the same graphite crystal in addition to graphite crystals with
mosaicities of 1.31 and 2.5 degrees. [Ref. 7]

For this thesis, the same three crystals were used to further explore the effects of
mosaicity by narrowing the detector angular field of view and by using a silver foil
backing instead of a tin foil backing on the graphite crystals. Also, corrections to
previous experimental data [Ref. 6,7] were done in an attempt to reconcile the differences
in apparent yield due to the experimental setups used in each experiment. A 95 MeV
eléctron beam incident upon each of the crystals about a Bragg angle of 22.5 degrees
yielded PXR radiation energies in the range of 4 to 26 keV. Analysis of the spectra from
this experiment yielded unexpected results on the angular distributions and the Bragg

angle coherence conditions.




II. THEORETICAL BACKGROUND

Parametric x-radiation (PXR) is a highly directional, quasi-monochromatic, tunable,
polarized and spectrally intense source of hard x-rays. PXR is generated by a relativistic
charged particle interacting with a single crystal. The unique feature of PXR, compared
to other radiation mechanisms, is the generation of photons at large angles relative to the
incident relativistic particle direction. [Ref. 3,8] The photons are emitted from the
crystal at an angle not dependent on the energy, but at an angle defined by the particle’s
angle relative to the crystallographic plane. When a relativistic electron (E >> mc?)
enters a crystal its electromagnetic field can be represented as a superposition of virtual
photons. [Ref. 9] This electromagnetic interaction is equivalent to the interaction of a
photon beam within a crystal, so we can use the results from the theory of x-ray

diffraction. When the Bragg condition, 2dsin 95 = nA , is satisfied real photons are

scattered at twice the incoming angle with respect to the crystal plane since the angle of

reflection is the same as the angle of incidence, 0z:

parametric x-ray charged particle beam
(real photons) (virtual photons)

Figure 2. Parametric X-rays Produced by Diffraction of Virtual Photons by the Planes of
' the Crystal Lattice




The Bragg condition defines the coherence condition of the crystal that affects the
production of PXR . The coherence condition of the crystal will change due to
deviations (mosaic spread) from a perfect microcrystallite structure. [Ref. 4] The

emitted photon energy (keV) for an ideal crystal is calculated using Bragg’s Law as

follows:

nA = 2dsin@y, E= R ¢y
_ nhe
2d sin6, @
_ 6.2n
dsinfy’

where, nis the spectral order, dis the interplaning spacing and 65 is the angle between
the electron beam and the crjstal plane. The second expression for Equation (2) may be
used when the spacing is expressed in Angstroms with energy in units of keV.

Parametric x-radiation, as with x-ray diffraction, can be explained by dynamic or
kinematic theory. The dynamic approach is used for ideal (perfect) crystals, whereas
the kinematic appfoach is used for real crystals. Kinematic diffraction is appropriate for
experimental observation of PXR and is most easily applied since the angular and spectral
distributions of PXR are simplified and have a universal form for different crystals. The

spectral-angular distribution for a perfect crystal is written as [Ref. 1,8]:

—____.agN ——ii_l_lx I2'8—2M' 9?0032(293)"'01 . I_e-L/La
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where N is the number of photons per electron, 6 is the Bragg angle, 6, and 6, are the
angular displacements away from 65 in and out of the incident plane respectively, x;,is
the structure factor and 2, is the mean dielectric susceptibility. ¥ is the Lorentz factor
and is equal to 1/VI-(v/c)®. &M is the squared Debye-Waller factor and accounts for the
increased thermal vibration of the atoms as the result of increased temperature. The
frequency of the emitted photon at the Bragg condition is: wg = nmc/dsin@3. The
spectral bandwidth, Aw, is the difference between the emitted photon and s . L, and
L are the photon absorption length and path length, respectively. The factor pg is

defined as A(2nl,). The following paragraphs discuss the effects of multiple scattering,
beam divergence, mosaicity and finite apertures.

When a virtual photon encounters the crystal atom, each electron in it scatters part of
the radiation. The structure factor describes how the atom arrangement affects the
scattered beam. The structure factor, Y0, is obtained by adding together all the waves

scattered by the individual atoms within the unit cell [Ref. 10]:

N . 2m(hug+ kv +lwy)

Ao = %fne ’ @

where u v w are the indices of a line drawn from the unit cell origin and 4 k / are the Miller
indices which describe the orientation of the planes within a unit cell. Jfnis called the
atomic scattering factor and describes the amplitude of each wave. The atomic scattering
factor depends on the wavelength of the incident beam and on the angle of the incident
beam, €, with respect to the crystal face. For a fixed value of @, fwill be smaller for a
shorter wavelength since the path differences will be larger relative to the wavelengthv.

The result is a greater interference between the scattered beams. The atomic scattering

factor is a function of (sin6)/A and the net effect is that f decreases as the quantity




(sin@ )/A increases. The atomic scattering factor and structure factor for the (002) plénes
of the mosaic graphite crystal are further discussed in Section IV. The intensity of the
PXR diffracted by the atoms of the unit cell, in a direction predicted by the Bragg law, is
proportional to the square of the amplitude of the resultant beam. [y,o/ ° is obtained by
multiplying the expression given in Equation (4) by its complex conjugate. Thus,
Equation (4) is very important since it permits intensity calculations of any hk/ reflection
from a knowledge of the atomic positions within the crystal.

Equation (3) assumes an infinite detector aperture, which does not approximate the
real conditions of the experiment, and neglects the effect of the aperture on the PXR
spectrum. The spectral distribution for real experimental conditions must take into
account detector size and distance from the crystal to the detector. The solid angle
subtended by the detector, dQ2=A0,A60,, where Af, and A6, are the angular fields of
view in and out of the plane of observation, respectively. Also, the last term in
Equation (3) can be approximated by: (w/ps)6[0,— tan6z(Aw/w)] , which correlates 6,
and A , and also connects the finite aperture of the detector, A6, with the observed
spectral bandwidth, Aw. For the aperture limited bandwidth regime, as is the case for
this thesis, the delta function approximation is still correct if A6,>>ps. Integrating
Equation (3) over the solid angle above, with A, finite and A, infinite, resultsina

spectral distribution for the mosaic crystal and is given by [Ref. 1,4]:

N _22_|ufe* L=
0w  hc (4sinfycosfy) Awd

p

T @) (0.~ |d), )

where 6, = (7'2 + | x0| +6; ) and 0: =@, +6,,+6.,,. Thisisthe characteristic

angular spread of PXR, which approximates the effects of beam divergence, multiple

scattering and mosaicity. [Ref. 1,8] The step function, S(c, - fu)) , which is unity when




the argument is positive and is zero otherwise, describes the effect of A6,. The

function Jy(ex, ,u) is defined as:

X

e Sz uz a, 1 _I o 1
Jz(axu) co. (263) ]+uzai+]+lf+mn (]+uz)l/2 (1+u2)3/2

b

o 1 a,

(1+2)" (1) (ot 144)

+| tan! X

with,  @,=6,/6, and u= (A—“’] tanby _ 9.
@ 0 0,

Since the measurements described in the thesis deal with the aperture limited

(6)

bandwidth regime, the spectral bandwidth, Aw , is determined by the value of A6, and

the full width at half maximum (FWHM) of Jx(a,,u) . If A6, is larger than the FWHM

of Jy(oy ,u) , then the bandwidth is the FWHM of J5(¢x, ,#) . This region is called the

“near field”, and there is very little finite aperture effects and most of the PXR is within

the field of view of the detector, A6,. If A8, is smaller than the FWHM of J,(ex, ,u) ,

then the bandwidth is proportional to A6, and is relatively insensitive to the form of

Jo(og.,u) . This region is called the small aperture regime or referred to as the “far field”.

The spectral bandwidth for the small aperture regime is:

Ao = 46,0
tan0y

)




The “far field” region is the region applicable to this thesis. Figures (3,4) illustrate the

function Jy(or, ,u) with AG, > FWHM of Jy(e, ,u) for the “near field” and A6, < FWHM

of Jy(0y ,u) for the “far field” case, respectively.

1.1

o.¢
0.8
0.7
0.64

0.5

Q.41 Aex
0.3

0.2 -/ ' \

0.1 “rrrrre—rrr s A CESS———— Wm—
-5 a5, 3 2 ! o 1 2 3 gg s

Figure 3. Near Field Case

A4
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a3
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Figure 4. Far Field Case



The angular distribution of emitted photons can be derived by integrating Equation (3)

over @ [Ref. 1,8], with the following result:

2 _
IN = i—ez—wg")La(]— e—L/La)XI?| efM 910052(263)+29i, ®
W0, i 05 (6146462

This can be put into dimensionless form by means of the normalized amplitude J = N/No

and Oy = AG,M/BP :

FN ¥ cos’ 20, + x°
——= N, J(x,y}, Jix,y)= R )
oxdy 0 ( ) ( ) (x2+_)/2+])2
_s € E’Q ~Lg [ 7
No= 4 c La(l_ ¢ ) sirf B ()

The number of photons detected in an angular width of 6y about G5 is defined by the

following [Ref. 8]:

3
ND=7:N0(1+0052293)ij ”dp2
> (p+1)
&, + 6 & } '
= NI+ cos’ 20, || m-2—L£ - 2 (11)
A 3)( 6 6+6
0
where, pD=b-i—.

The value of N depends on the detector angular size even for 6, >>6,. This does not
occur in channeling or Bremsstrahlung radiation. However, this circumstance is

conditioned by the slow de.crease =0 of the PXR intensity.
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. PXR EXPERIMENTAL DESCRIPTION

Several parametric x-radiation measurements were made using three separate targets of
pyrolytic graphite with differing mosaicities. The Naval Postgraduate School Linear
Accelerator (LINAC) was used to produce electron beam energies of approximately 95
MeV. Initial energy calibration was performed using three fluorescent x-ray sources,
copper (Cu), tin (Sn) and yttrium (Y). The PXR yield (photons per electron) was
obtained by simultaneously monitoring the x-ray fluorescence from a silver foil, placed
directly behind the mosaic crystal, which was used to determined the LINAC current.
The PXR observation angle was set at 45 degrees with respect to the electron beam
direction and the detector was placed 100 centimeters from the target. The detector _
angular field of view was narrowed from previous experiments to 1 mrad to enhance the
angular resolution of PXR. This configuration corresponded to a Bragg angle of 22.5
degrees with respect to the (002) atomic planes of the crystals. Each crystal was rotated

about the nominal Bragg Angle in small incremental angles in the range 20.5° to 24.25°.

The photon yields of the spectral orders at each angle were obtained to generate “rocking
curves” for each crystal. This allowed for comparison of the n®™ order peaks between
each crystal and showed the yield dependence of the various order x-rays when the Bragg

condition was not satisfied.

A. UCAR GRAPHITE MONOCHROMATORS

The mosaic crystals used in this experiment are known as Union Carbide (UCAR)
Graphite Monochromators. [Ref. 11] These monochromators are highly oriented forms
of high purity, pyrolytic graphite which diffract x-rays with greater efficiency than any
other material. In x-ray analysis, intensity is increased 3 to 15 times over that obtained
with conventionally used crystals such as the lithium fluoride. Mosaic spread is defined

as the half maximum height peak width of the Cu-K, rocking curve and is measured in

degrees. In perfect crystals, where mosaicity is zero, the periodic structure of the

11



crystal is such that the placement of the atoms and the spacing between crystal planes are
equal throughout the material. The mosaic graphite crystals used in this experiment
were the ZYA, ZYD and ZYH grades. The mosaic spread specifications were 0.4 %
0.1°, 1.2+ 0.2° and 3.5 £ 1.5°. The tolerances were quite large, so the crystals were
sent to the Naval Surface Warfare Center (NSWC) for determination of the actual mosaic
spreads. Buckingham and Ivey’s thesis [Ref. 7] contain the x-ray diffraction curves used
to determine the actual spreads. The resulting spreads were 0.45°, 1.31° and 2.5° for the
ZYA, ZYD and ZYH crystals, respectively. Other than the mosaic spread differences,
each of the crystals have identical properties. The (002) reflecting plane spacing is 3.357

1 0.002 Angstroms and the crystal density is 2.260 + 0.005 grams per cubic centimeter.
[Ref. 11] The measured thicknesses of each crystal are 0.1389 + 0.0001 cm, 0.1659 %
0.0001 cm and 0.1789 = 0.0001 cm for the ZYA, ZYD and ZYH crystals, respectively.
[Ref. 7]

B. LINEAR ACCELERATOR

The Naval Postgraduate School LINAC is shown on the next page in Figure (5).
Operation of the LINAC took place in the control room and remote cameras were used in
the end station to assist in obtaining desired electron beam alignment. The accelerator
portion consists of three ten foot sections, each with a separate klystron connected by
waveguides. Acceleration of dark current électrons to energies of approximately 95
MeV took place in the accelerator section. Dark current refers to using the LINAC with
zero gun grid voltage, so that only stray electrons are accelerated. The accelerated
electron beam is steered by a series of electro-magnets into the vacuum target chamber.
The target chamber houses a vertically positionable ladder and dual axis goniomemter.
This arrangement was used to hold and orient the mosaic crystals. The LINAC is

operated at 2856 Mhz with a pulse repetition rate of 60 Hz. The beam pulse length is

12




approximately 1 usec. Thus, the LINAC duty cycle requires the ability to count at 60
Mhz with a single photon being detected during each LINAC pulse. [Ref. 6]

l Klysiron Gallery J

1010 C!

Quadnipoles
c End Stazion

Sleornry §
I/:.\ -7,

Quadrupole Magnets and End Station Steering Magnets

The detector used was the Canberra Si(Li) model SI200250, which has a nominal
resolution time of 12 psec, so the LINAC was adjusted to limit the average count rate

including background to one count per three to five machine pulses. By limiting the
LINAC beam to dark current double counting by the detector could be avoided. In other
words, if two photons were stopped by the detector at the same time (within the peak
shaping time of the detector) then the result would appear to be a single photon with an
energy equivalent to the sum of the two coincident photons. This is of concern since
PXR peaks are integral multiples of one another with respect to energy and could result in
erroneous results of the higher order peaks. Maintaining a constant dark current was

difficult and required attentive operators.

Figure 5. Naval Postgraduate School Linear Accelerator Showing Klystrons,
13




C. EXPERIMENTAL SETUP

The vacuum target chamber housed the target ladder to which the three crystals, a
phosphorescent screen with a copper foil backing and sandwiched Sn-Y foils were
attached in a vertical coplanar arrangement. The Cu and Sn-Y foils were used for energy
calibration purposes (discussed in part E.). The phosphorescent screen contained a pin
hole in the center which was used to position the electron beam. The target ladder could
be raised, lowered, rotated and tilted to position the crystals to the desired geometry.
A 0.0052 inch silver foil backing was placed on each mosaic g;aphite crystal to determine
LINAC beam current (discussed in IV.C.). Previous experiments [Ref. 6,7] used a tin foil

backing in which the K, line at 25.27 keV overlapped the fifth spectral order line of the

PXR. This led to errors in determining beam current. Figure (6) shows the experimental

setup:

TV to Observe

Beam Spot
from Crystal
\\\ . :
N Mosaic Crystal w/ ,
Ag Foil Backing -

e1=225 \ Tunnel

.
i a
Electron !
Beam =
! SEM '
|
SiLi
Alignment Detector
Laser

Figure 6. PXR Experimental Setup in the LINAC End Station
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The alignment laser was used to establish the orientation and position of the crystal
with respect to electron beam. The alignment laser was initially adjusted so that it went
through the geometric center of the chamber. The ladder was then positioned so that the
laser was able to pass through the pin hole in the phosphorescent screen and remain
within the pin hole upon rotation of the ladder through 360 degrees. Since the crystals
and phosphorescent screen were coplanar it was assured the electron beam would remain
in the same position on the crystal as the ladder was rotated. The laser also established a
zero degrees or “home” position by the reflection of the laser back onto itself from the
face of each of the crystals. The sharpness of the reflected laser was very dependent on
the mosaicity of the crystal. The ZYH crystal returned a very diffuse reflection which
made it hard to determine the zero position, whereas the ZYA had a very focused
reflection and the “home™ position was easily determined.

The electron beam was adjusted so that it passed through the center of the quadrupole
magnets, so that adjuétments in klystron frequency and phase during the experiment
would not affect the location of the beam on the crystal. Use of the end station steering
magnets positioned the electron beam through the pin hole in the phosphorescent screen.

The Si(Li) detector was placed on the 45 degree viewing port. The Bragg condition
for this position was 22.5 degrees. The crystal was initially positioned perpendicular to
the laser (“home” position) and then rotated clockwise to 22.5 degrées. Data was
collected at this position and then the crystal was rotated counter-clockwise to 20.5
degrees where data was collected again. Subsequent readings were collected at 21.0,
21.5, 22.0, 22.25, 22.75, 23.25, 23.75 and 24.25 degrees by rotating the crystal
clockwise. The same procedure was used for the remaining crystals.

A measured 1 mm wide slit was placed in front of the Si(Li) detector to narrow the
angular field of view of the detector to 1 mrad. This was to allow for better angular

resolution of the PXR from prior experiments. DiNova’s [Ref. 6] far field case and near

field case had angular field of views of 16 mrad and 55 mrad., respectively. Buckingham

and Ivéy’s [Ref. 7] near field case had an angular field of view of approximately 23 mrad.

15




The peak energy cones for the PXR with respect to the horizontal plane are located at a
peak angle, which is equalto ¥/, of approximately 5.4 mrad (for a 95 MeV electron

beam). [Ref. 19] The 0.5 degree step size, used to obtain “rocking curves” in the
previous experiments, effectively swept large fields of view over the detector washing

out the details of the PXR distribution.

D. SPECTROSCOPY ELECTRONICS

The end station was close'enough to the klystrons such that the Si(Li) detector was
susceptible to ground loops and radiated noise from the klystrons. Lead bricks were
used around the Si(Li) detector to reduce background radiation and the end station was
enclosed in a metal mesh cage to reduce the interference of radiated noises. In addition, a
gating system was established and the electronics setup is shown in Figure (7). All of the
system components were located in the control room with the exception of detector and

amplifier.

ORTEC 661

Ratemeter
Nucleus PCA-II Pulse | Model 770
Height Analyzer Digital Counter

' TENNELEC TENNELEC TC

ISi(Li) detector HTC 244 308 Dual Linear

Amplifier Gate

Stanford Research
Systems Inc. DG 535
Pulse Generator

Model 770

LINAC Digital Counter

Figure 7. Electronics Setup
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The Si(Li) detector signal was sent to the Tennelec TC 244 amplifier. The Tennelec TC
308 dual linear gate reduced undesired signals by providing a 25 pisec gate during which

the desired signal could be received. This effectively made the system only active during
the LINAC machine pulse. The dual linear gate was triggered by the Stanford Research
Systems DG 535 pulse generator. Introduction of a delay time with respect to the
LINAC’s start sequence time adjusted the gate to coincide with the arrival of the beam
pulse. The ideal delay time for the gating was determined by using an oscilloscope along
with the Pulse Height Analyzer (PHA) and the fluorescent signal from Sn-Y foils. The
delay tirﬁe was determined to be the time at which maximum signal was observed.
Shorter and longer delay times resulted in no signal.

Klystron noise on the signal affects the energy calibration and the noise varies day to
day. The klystron RF noise adds negative bias to the pulse signal energy calibration
which tends to be non-random with respect to LINAC’s start sequence time, thus
shifting the energy calibration to that obtained using radioactive sources. The klystron
noise was typically in the negative voltage portion during the system gating as sho;vn in

Figure (8):

Figure 8. Typical Shape of Klystron Noise during PXR Data Collection. The Arrow
Indicates the Approximated Gated Portion

This negative signal is added to the positive voltage of the detected PXR, thus reducing
the output voltage. Since the PHA determines the channel (or energy) based on the
energy deposited in the active detector region the lower pulse height is interpreted by the

PHA as a lower photon energy. For this reason the calibration must be obtained during
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the same portion of the machine cycle as the PXR spectrum to get the same klystron

noise effect for both PXR and calibration fluorescent x-rays. Thus, calibration spectra

were taken prior to each day’s data run using known fluorescent lines of Cu, Snand Y to

eliminate this source of error.

E. SOFTWARE AND ENERGY CALIBRATION
The PCA-II Pulse Height Analyzer software [Ref. 12] was used to record the number

of counts per channel detected. The spectrum was divided into 2048 channels and prior

to each day’s experiment an energy calibration spectrum was obtained by measuring the

x-ray fluorescence from the Cu and Sn-Y foils. Figure (9) is an example of the calibration

spectrum of the Y, Cu and Sn K, peaks:

Help Tile Calce

Setup Optioms
————rcr——rr——sr—==" Nuoleus PCA-I

fAug 29, 1995
11:42:25 an
Aequire: Off
Hode:  PHiA
Timer: Live
Scale: 256
Group: o
Rei No: 1
Rai: On
Gain: 848
Offset: 8
Adc: hdd
Display: 2048
Overlap: Off
Chn: 386
Cts: 18

Preset:
RO Inmi: £969 + 42

Elapsed: 61532
#0I Net: 816 t 52

R : i .-

VT CORVTTTNT R TN

@ 168
Percent Dead Time

F8-3SS: off

Fi-Require F2-Erase 713-Preset

F4-Expand Fi-Ident F6-Laad F7-Save Esp-ROL

Figure (9). PCA-II PHA Software Calibration Spectra
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The LINAC was operated at full gun grid voltage and the electron beam was made to
strike the sandwiched foils of Sn and Y and the Cu foil on the phosphorescent screen to
observe the K, fluorescent lines at 25.27 keV, 14.96 keV and 8.04 keV, respectively.
The calibration was obtained using the centroid channel for each of the fluorescent peaks.
The PCA-II PHA software determined the relationship between channel position and

energy and with the following equation:
E(keV ) = ay + a)( channel ) + az(channeljz , (12)

where, gy, a; and a; are constants determined by performing Gaussian fits of the counts
received in each region of interest, selected by the operator, surrounding the Cu, Sn and
Y peaks. The values of these constants and whether all were used changed daily with
each calibration due to variances in the equipment. The energy calibration was verified
by ensuring the Ag K, line near 22.16 keV appeared on the crystal spectrum. Figure
(10), shown on the next page, is an example of a crystal spectrum showing the PXR
integral spectral orders and the Ag K, peak. The last peak, which is not highlighted, in
the figure is an overlapped peak composed of the 5 spectra'l order of the PXR and the
silver K; line. The results of the spectrum were saved as ASCII files for further analysis.

These analysis are described in greater detail in following sections of this thesis.
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e e Nyeleys P11 e e
1d: zyaz225.spw — 12131445 pw fug 29, 1993
fug 29, 2995

4:18:56 o,
Acquire: Off
Bode:  PHA
Timer: Live
Scale: 2%
Group: @
Poi No: Nome
Boi: On
Gain: 2848
Offeet: #
Adc: fAdd n=1
Bisplay: 2948 =2
Chw 292
kel 6.39
Cte: 5
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Figure (10). ZYA Crystal Spectrum at 22.25°
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IV. DATA AND ANALYSIS.

ASCII format data was collected from the Si(Li) detector using the Pulse Height
Analyzer PCA-II software. The raw data spectra for the Cu-Sn-Y calibration and the
ZYA, ZYD and ZYH crystals at each of the angles listed in the previous section was
imported into a spectrum analyzing program called PeakFit v3.0. [Ref. 13] The net areas
with uncertainties of the PXR spectral order peaks and the silver peak were determined
and then corrected for attenuation losses using Photcoef. [Ref. 14] The corrected net
peak areas were then used to calculate the yield (number of photons per electron) and the

intensity ratios between the spectral order peaks.

A. PXRPEAK AREA DETERMINATION

PeakFit was used to remove the background noise and produce a Gaussian fit for each
peak in the spectrun'l.‘ An example of the peakfit for the raw calibration data is shown in
Figure (11). The Gaussian fit was chosen since it gave the best fit to the raw data. The
background and curve-fit parameters with uncertainties were 'generated by the program.
The energy calibration, correlating channels to energies in keV, from the peakfit was
calculated in the same manner as discussed previously. The calibration equation for a

three peak fit (Cu, Sn and Y) of Figure (11) was found to be:
E(keV) = 0.7244 + 0.0194-(Channel). - (13)

The a; coefficient of Equation (12) was neglible. This equation was used to calculate the
peak centroid Aenergies for the crystal spectrums following the calibration. The centroid
channels were taken from the curve fits of the crystal and the energies were easily
calculated. Figure (12) is an example of a peak fit, following the calibration in Figure
(11), of the ZYD crystal at an angle of 22.5°.  The values obtained for the n=1, n=2,
n=3, n=4 and silver peaks were 4.67, 9.39, 14.13, '18.90 and 21.80 keV, respectively.
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Figure (11). PeakFit Spectrum of Cu-Sn-Y Raw Data
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Figure (12). PeakFit Spectrum of ZYD Crystal Raw Data
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Figure (11) shows two other peaks near the Y and Sn K, lines. These are the Y and Sn
K lines at 16.7 keV and 28.5 keV, respectively. Also note in Figure (12) the spectral

orders roughly follow integral multiples of one another and that the silver peak energy is

near to the expected K, line at 22.16 keV. Also, the last peak is the overlap of the PXR
fifth spectral order line and the silver K, line. The theoretical Bragg Energy using

Equation (2) results in a value of 4.83 keV for the first spectral order which is higher than
the observed value obtained using Equation (12). These discrepancies can be attributed
to several factors such as determination of the “home” position (see previous section for
discussion), errors associated with the PeakFit program and inherent instrument
inaccuracies. However, the observed energy values are within 3% of the theoretical
values and were consistent for all peak fits.

In addition to obtaining centroid energies, the PeakFit program integrated each peak
to produce a net area and the full width at half maximum values for each peak. The
resultant areas were based on what the Si(Li) detector received. Attenuation of the PXR
occurred through the kapton (C,,0sN,H,¢) window in the target chamber, the beryllium
(Be) window of the detector and the air gap between kapton window and the detector.
Measured thicknesses, ¢, for each of these were 0.0025 cm, 0.005 cm and 1.8 cm,
respectively. PhotCoef was used to calculate the attenuation coefficients at each energy.
At low energies the attenuation coefficients varied across each peak, whereas the
coefficients were approximately constant across the higher energy peaks. Assuming a
linear behavior of the attenuation coefficient across the lower energy péaks, which were
fitted with a Gaussian distribution, the centroid energy could be used as the average
energy across the peak. This turned out to be a good approximation and is shown to be
in Appendix A. The net corrected areas for the crystal and silver peaks were calculated

as follows [Ref. 15]:

corr = Anet

1
‘peak peakz ex, :uairp air tair + :uBep Be tBe + /’LKap P Kap tKap ] ’ ( 1 4)
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where U, U, and g, are the attenuation coefficients (cm?/g) at each centroid peak
energy, Par=1.21x103 g/em’, Pr=1.848 g/cm’, Pkap=1.42 g/em® and ¢ is the detector

efficiency and varies with the energy of the PXR. The efficiency curve for the Canberra

Si(Li) detector at various energies [Ref. 16] is given in Figure (13):

100 T T T

Be Windows
0.0075 mm

0.0125 mm

)
S
|

Si(Li) Crystal
3 mm thick

5 mm thick
0.025 mm

o Detector Efficiency
T

L torop i L Lot Lottty
1 Energy(keV) 10 ' 100

=
-y

Figure (13). Efficiency Curves for the Canberra Si(Li) Detector

B. PXR PEAK AREA UNCERTAINTY CALCULATION
Uncertainties existed in the net peak areas given by PeakFit which did not provide the
area uncertainty values. To estimate the uncertainty a triangular peak was assumed.

The background area for each peak was calculated as follows:
ABkg;, =2-FWHM - [ao + a,( peak channea], (15)

where gy and a; are the background coefficients taken from the PeakFit parameters,

FWHM is the number of channels of the full width at half maximum for each peak and
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peak channel is the centroid value of each peak. The area uncertainty for each peak is

then:

614 =1!Ane’+ 2.ABkgd’ v (16)

where 4™ is net uncorrected area obtained from the PeakFit results. Since the
calculation of the number of photons per electron, N, involves the division of the 4,

by A4, (discussed in next section) a total uncertainty was calculated in quadrature:

Sdr,, = \/ (84,5 +(84,) . 17)

where the terms inside the square root are calculated using Equation (16). The total
uncertainty values obtained varied from about 4.6% at the Bragg condition to
approximately 18.6% at the furthest angle away from the Bragg condition. Appendix B.
lists the area uncertainty values for all peaks. Also, the uncertainties were larger for

higher mosaicities as expected.

C. PXR YIELD CALCULATION

The corrected peak areas were used to calculate the number of photons per electron as

follows [Ref. 15]:

Corr
N = Aoy ,
Tnac
where (18)

Aﬁ;”(A WAg)

Ivac = '
Q
O'Ag(ﬁjp 1 1) Sl 1) ry
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Invac is the electron beam current determined by the yield of the silver fluorescent peak.
AW 4, is the atomic weight of Ag (107.9 g/mol), N, is Avagadro’s number (6.023 x 1023

mol™), Oy is the electron interaction cross section (1.05 x 10 22 ¢m? for a 95 MeV

electron beam) [Ref. 17], fu, is the de-excitation transition probability (0.692)[Ref. 17],
and p,, is the density of silver (10.5 g/em™). The fluorescent x-rays from the silver

undergo absorption through the crystal and is calculated as follows:
a = - ——— s 1 9
ex P, (19)

where [, is the attenuation coefficient of the crystal at the silver K, energy, p.,, is the

density of the crystal and the term in the parenthesis is the effective thickness of the
crystal through which the fluorescent x-rays pass through.
The effective thickness of the silver, 7,5, through which the electrons pass through

was calculated by dividing the thickness of the silver, ¢,, by the sin of the angle of

incidence of the electron beam as shown in Figure (14):

657\ teff
electron beam t

teff = ti/sin(Og)

Figure (14). Configuration of Silver Foil to Determine Silver Effective Thickness. 05 is
the Bragg Angle or the Angle between the Target Face and the Electron Beam Direction.

t, is the Normal Target Thickness
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The detector solid angle, £2p,,, was calculated based on the 1 mm wide by 16 mm

long slit placed on the detector window. The solid angle is calculated by:

(20)

where the Dist’ is the distance from the crystal to the detector (1000 mm).

The calculation for the effective silver thickness must be further modified to account
for the attenuation of thé fluorescent x-rays by the silver foil. Section V. discusses this
effect in further detail to explain the differences in PXR yield from previous experiments.

The following equation accounts for this [Ref. 15]:

oo o

= , @1
7 Pagtag

where [L4, is the attenuation coefficient at the silver K, energy. The resultant yields for

each of the crystals at the angles listed earlier were plotted to obtain the “rocking curves.”
The observed yield versus the crystal orientation angle is shown in Figures (15-17) for the
ZYA, ZYD and ZYH crystals. Included on the plots are the spectral orders. Figures
(18-20) shows the first spectral order comparison between the crystals. Figures (2 1,'23)
depict the uncertainty error bars with the yield on semi-log plots. Discussion of these

plots will occur later in the thesis.

D. PXR INTENSITY RATIO CALCULATION
The amount of PXR can be calculated using Equation (11), however, this equation
does not provide results that can be easily compared to experimental data. The PXR

theory can be compared to the experimental results by calculating the ratios between the
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n =12, 3.... peaks (in Equation (10)) to the first order peak. The factors of Equation (10)

that are variables of the spectral order » have the relationship:

n — 2
Ny o< @f/L,(1-ea )|z, [ e, 22)

where the terms of structure factor for graphite are given by [Ref. 10,19]: |

114 A

2 ; m\h+ 2k
Y = I, /(Slnejcosz( ( 3 )J 1 = even;

, ( ) (23)
2rxy . [ sin6 2r\h+ 2k
=27 si 1=odd.
X1 - /( 2 ) V’[ 3
For the (002) planes in our mosaic graphite crystals, where #/=k=0 and /=even, the
structure factor becomes:
w2 [ sind

=—£ — | 24
X0 =" /( 1 ] (24)

where 7, is the classical electron radius, ¥ is the volume of the unit cell of the crystal and
the quantity in the parenthesis is based on the scattering angle and the wavelength of the
incident beam. The squared wavelength term is a function of wg(n) which is the
frequency of the spectral orders at the Bragg condition. The structure factor describes
how the atom arrangement, given by 4, k and / for each atom, affects the scattered beam.
The variable fis referred to as the atomic scattering factor and is used to describe the
“efficiency” of scattering of a given atom in a given direction and depends on the

wavelength of the incident beam. For an atom undergoing thermal vibration [Ref. 10]:
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f=fe", (25)

where fj is the same as £, but is for an atom at rest. The quantity M is hard to determine
accurately and is a function of amplitude of the thermal vibration and the scattering angle.
[Ref. 10] Since the intensity of any line depends on f?, calculated intensities must be
multiplied by e to allow for thermal vibration. The temperature factor, e, allows

H

for thermal vibration of the atoms and is a function of A and @ for a particular material.

The quantity M depends on the amplitude of the thermal vibration and the scattering
angle, 0 [Ref. 10]:

2

where B is a function temperature and is difficult to determine accurately. A is the

wavelength of the incident beam. Since wp(n) and A5 are functions of the spectral order:

(n) _ hne
- dsinfy
. 2 (27)
==,
’ [wé")] -

then Equation (22) can be rewritten in terms of the spectral order:

o _ Ll _{_2=_1_’ _ -l
Ny senll=e o) = | ==, (1-ete), (28)

29



where e?M was left out of the proportionality since it was not a function of the spectral
order as shown above. Taking the ratios of the n™ order peak to the first order peak

results in;

29

where L is the crystal thickness and # is the spectral order. L, is the x-ray absorption

length and is given by:

L =—1 (30)
HenP cry

Figures (24-25) show comparisons of peak intensity ratios for the ZYA, ZYD and
ZYH crystals. Equation (29) was solved for the mosaic crystals at each orientation angle
and are listed in Appendix B. Although Equation (29) is for the Bragg condition, the
calculations were made to see the effects of using the equation when the crystal position
was not at the Bragg condition. Figures (26-28) show each crystal’s data versus theory
using Equation (29) and it is noted that the equation needs to be evaluated as a function of
tﬁe crystal orientation angle, as well, when the Bragg condition is not met. Figures (29-
31) are the peak intensities versus spectral order for the Bragg condition for each crystal.
The Bragg condition was shifted for each crystal due to the alignment errors in
determining the “home” position. Thus, the crystal orientation angle to plot the
intensity ratios as a function of spectral order was chosen as the angle with the highest

PXR yield. This turned out to be 23.25° for the ZYA, 22.75° for the ZYD and 22.75°

for the ZYH crystals. The results show a significant deviation from calculation of the

second order peak ratios whereas for the third and fourth order peak the experiment and
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calculation are in agreement. The interpretation of this deviation is unclear at this time.
Equation (8) can be used to calculate the PXR yield as a function of crystal orientation
angle from the Bragg condition using a numerical equation solver. The resultant yields
can then be used to solve the peak intensity ratios. Buckingham and Ivey [Ref. 7] used
this method to solve the PXR yields with and without the effects of scattering and mosaic
spread. Appendix D. lists the calculated intensity ratios for this experiment and theory
intensity ratios from Buckingham and Ivey’s method. Figures (32-37) are the
comparison between the intensity ratio results from this experiment and the theory
intensity ratios from Buckingham and Ivey’s thesis as a function of crystal orientation
angle. The results seem to follow their theoretical intensity ratios better than those using

Equation (29).
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V. DISCUSSION OF PREVIOUS RESULTS

A review of previous mosaic graphite experiments [Ref. 6,7] resulted in finding
differences for calculating the PXR yield. Both DiNova’s and Buckingham and Ivey’s
calculation for the effective thickness of tin was based on the assumption of a very thin
target. Fluorescent x-rays are produced as the electron beam passes through the target
and are simultaneously attenuated as the x-rays move through the foil. Equation (21)
gives the effective thickness of the target foil based on the production and attenuation of
the x-rays within the target. If the foil thickness is small compared to the inverse of
(Up) 45 then we can expand the exponential in Equation (21) and keep only the term linear
in thickness, #: |

t 1

teﬁr = > t << .
sin6 (BP)ag

GD

Equation (31) which was used in Buckingham and Ivey’s experiment was not a very good
approximation. The wavelength corresponding to energy of 25.27 keV is 4.91x10° cm
which is many orders of magnitude smaller than the tin foil thicknesses used in the
previous experiments. Equation (21) was used to calculate the corrected effective
thickness with u = 11.4 cm?/g (for a 25.3 keV x-ray), p=7.3 g/cm’ and = 0.1389 cm.
Their yield was adjusted by direct multiplication of the ratio: tefrcordteffprev - AS
discussed in Buckingham and Ivey’s thesis the effective thickness calculation in DiNova’s
thesis was #,4= t/cos@ . For the geometry of the experiment dividing ¢ by sin@ was the
correct method.  Her tin effective thickness was calculated and then divided out of her
PXR yields. Appendix C. lists the previous and corrected tin effective thicknesses for
the analysis. Also included are the other factors used in the previous yield calculations
and the corrections required to adjust those yields. The additional factors are further
discussed below. Table (1) shows the constants used to obtain the values listed in

Appendix C.
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DiNova DiNova Buckingham & Barrows
Ivey
Solid Angle 2.39E-03 2.00E-04 4.15E-04 15.96E-6
(sr.)
Solid Angle
Correction
(wrt Barrows) 0.0067 0.0798 0.0385 N/A
(wrt Ivey & 0.1796 2.0750 N/A N/A
Buckingham)
Foil Thickness Tin Tin Tin Silver
(cm) 2.75E-03 2.75E-03 1.52E-02(ZYA) 1.32E-02
1.54E-02(ZYD)
1.56E-02(ZYH)
Foil Density 7.31 7.31 7.31 10.5
(g/em’) .
ZYA Thickness 0.1389 0.1389 0.1389 0.1389
(cm)
ZYD Thickness 0.1659 0.1659 0.1659 0.1659
(cm)
ZYD Thickness 0.1789 0.1789 0.1789 0.1789
(cm) ‘
Absorption
Coefficients
(cm¥/g)
Foil @ 25.27 keV 11.4 11.4 11.4 see Appendix B.
Crystal @ 25.27 0.309 0.309 0.309 see Appendix B.
keV

Table (1). Values of Constants Used for Appendix C. Results

DiNova’s yield calculation included the tin attenuation factor, P , in the

absorption term, a, and was calculated using the incorrect 7. Her tin attenuation factor
was then divided out of the yield since it was accounted for in Equation (21).

Also, a corrected attenuation factor for the ZYA crystal was needed due a similar
error in calculating the effective thickness of the crystal. Equation (19) was used to

determine the corrected crystal absorption factor. It was also used for the previous
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absorption factor by replacing the sine term with a cosine term. The PXR yield was
further corrected by multiplication of the ratio: (corrected crystal attenuation factor)/
(previous crystal attenuation factor).

Buckingham and Ivey’s yield did not include a term for attenuation of the fluorescent
x-rays due to the crystal. An attenuation factor was calculated using Equation (19) with

p=0.3 cm’/g (fora25.3 keV x-ray), p=2.26 g/cm? and ¢ = 0.1389 cm for each angle

from the Bragg condition. Further correction to their previous yield was by
multiplication of the calculated crystal absorption factor.

Solid angle corrections were made so as to compare the yields between the
experiments. Figure (38) depicts DiNova’s corrected near field and far field yields to
Buckingham and Ivey’s corrected near field yield. The yields are with respect to
Buckingham and Ivey’s solid angle of 4.15 x 10 sr.. They are within a factor of two and
exhibit ‘;he same behavior. Figure (39) shows the corrected ZYA crystal yields of the
prior expeﬁments and this experiment. The solid angles were corrected to that of the
new data presented here. Again the yields are within a factor of two. Figures (40-42)
show the yield comparison of the ZYA, ZYD and ZYH crystals for Buckingham and
Ivey’s results and this experiment. The ZYA and ZYD exhibit the same behavior and are
very comparable in yields. It should be noted that the ZYD behavior from this
experiment shows a deviation at the angles furthest from the Bragg condition. This
deviation will be discussed in the next section. The ZYH yield comparison plot depicts
large deviations in my results compared to the previous experiment and will be addressed
in the next section.

Appendix C. presents the corrected yield, treated in the same manner as presented in
this discussion, for the ZYA, ZYD and ZYH crystals for all experiments. DiNova’s
thesis used the ZYA crystal, whereas, Buckingham and Ivey’s experiment and this

thesis considered all three crystals.
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VI. DISCUSSION OF MOSAIC SPREAD

The radiation pattern of the PXR beam was shown in Figure (1) from a thin silicon
crystal. Because of the different crystal structure, for thick mosaic graphite crystals the
pattern shape would be different. How the pattern would appear for the crystals used in
this experiment are not available since the calculation to obtain the pattern has not been
performed. However, with mosaic crystals, it is known the microcrystallite structure
varies significantly depending on the mosaic spread. The coherence condition for a
perfect crystal is such that an integral number of virtual photon wavelengths fit along the
path shown in Figure (2) and the resultant PXR beam pattern would remain the same no
matter where the electron beam strikes the crystal. The unpredictability of the mosaic
graphite microcrystallite structure would change the coherence conditions on different
areas of the crystal, thus, changing the beam pattern.

The previous experiments used a much larger detector angular field of view, as
discussed previously, in which the entire beam pattern was within the detector window.
This experiment significantly narrowed the angular field of view in principle allowing the
details of the PXR distribution to be more readily seen. A beam pattern with irregular
peaks and valleys would result in the detector seeing different amounts of PXR using a
narrow slit as the crystal was rotated. As mosaicity is increased, the irregularities would
increase and would vary depending on where the electron beam was incident upon the
crystal. Thus, PXR yield would be different at various points on the crystal due to
changes in the coherence conditions. The narrow slit and the location of the incident
electron beam contributed to the differences seen between the crystals. Figures (18-20)
show this effect from the differences in mosaic spread. The shift in the peak yield from

the Bragg angle (22.5°) can be attributed to the inaccuracies in determining the “home”

position with the diffuse reflection of the laser and the narrow slit effect. Also, the
intensity ratio plots would behave differently than expected as seen in Figures (24-26).

Both the crystal yields from Buckingham and Ivey and from this experiment, as seen in
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Figures (40-42), further illustrate the narrow slit and mosaic spread effects. The ZYA
crystal yield plot is similar since the beam pattern was more consistent at different points
on the crystal and the narrow slit did not affect the results as much. The ZYD and ZYH
plots were progressively worse since the beam pattern was less consistent at different
points and the slit began to affect the PXR detected. The results for the ZYH crystal for
this experiment, presented in Figure (42), show that the electron beam was incident on
an area of the crystal with a coherence condition different from that of Buckingham and
Ivey’s. DiNova’s results on the ZYA crystal for both the “near” and “far” field were
consistently higher by almost a factor of two as seen in Figure (38). The discrepancy is
suspected to be an unaccounted normalization factor. However, the ZYA results from
every experiment gave the highest PXR yields and the narrowest “rocking curves” as

compared to the other crystals.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The results from this experiment and re-analysis of previous experiments have shown
that reproducible experimental results are extremely important. The thesis has uncovered
the inconsistencies in the collection of data and the calculations of PXR yield which
affected the yield and intensity results. Although the experiment should be modified to
enhance the experimental outcome, care must be taken to ensure the other aspects of the
experiment are performed in a similar manner. The collection of PXR data was very time
intensive and limited the amount of data that could be collected from a crystal.

The methods used in calculating the PXR yield had a significant effect on the
outcomes of each experiment as presented previously. The thin target assumption made
in previous experiments and the omission of the crystal attenuation factor for the
fluorescent x-rays led to these outcomes. Future experiments should incorporate the
same equations used in this experiment for thick targets.

Each crystal in this experiment took two working days to collect the data. This led
to errors in the crystal orientation angle, especially for the crystals with larger
mosaicities, since determining the “home” position depended on the back reflection of the
laser. Prior experiments used a mirror instead of the crystal face and it is recommended
that future experiments use a mirror to determine the zero position.

Another systematic error in the experiment is the use of different programs to analyze
the spectra and for attenuation calculations. PhotCoef and XCom [Ref. 21] were used in
the analysis of the attenuation factors and only one should be used to minimize errors in
obtaining the PXR yield. The attenuation factor differences were small (within 0.01
cm?/g), but for consistency the same program should be used.

The same should also apply for the curve fits of the data. QuattroPro [Ref. 22] was
used by DiNova and PeakFit was used by Buckingham and Ivey and for this experiment
to obtain the number of counts for the net areas. Again the errors would be small and the

same program should be used in all experiments.
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The foil backing on the crystals was changed to silver to prevent the overlap of the
PXR fifth spectral order peak with the Cu K, line, as was the case in the previous
experiments using the copper foil backing. This allowed a better calculation of the
LINAC beam current and the resultant PXR yields. How this affected the differences in
the PXR yields will be determined in future experiments utilizing a silver foil backing.

Lastly, the narrower detector angular field of view used in this experiment
significantly increased the amount of time needed to collect the PXR spectrum data.
Although the angular resolution was better, especially for large mosaic spreads, it made
determination of the “home” position more difficult and led to an uncertainty in
establishing the same crystal orientation to the electron beam on the succeeding day for
the crystal data run.

Additional experiments should be run again on the mosaic graphite crystals using the
same methods in this experiment to ensure the experimental errors are consistent so that a

better comparison between the theory and experiment can be obtained.
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APPENDIX A. AVERAGE PEAK ENERGY APPROXIMATION

The linear attenuation coefficient is a function of energy and behaves in a non-linear
fashion. The linear attenuation coefficient varies more for a change in energy across the
lower order peaks than across the higher order peaks. In fact, the linear attenuation
coefficient remains approximately constant across the higher energy peaks. Thus, an
average energy across the lower energy peaks was required to determine the attenuation
coefficient using PhotCoef. Analysis for the large number of channels (or energy) across
the lower peaks proved to be cumbersome. Thus, an approximation was needed to
evaluate the large amounts of data. The table below shows randomly selected energies of
the first order peak for the ZYA crystal at 22.5 degrees. The centroid energy for the
peak is 4.74 keV. The number of counts at each energy was obtained from the PCA-II
ASCII data files. Also included are the linear attenuation coefficients at these energies for
beryllium, kapton, carbon and air. Equation (14) was used to obtain the corrected

counts at each energies.

Tinergy Net ﬁeryllium Kapton Carbon Air Corrected

(keV) | Counts L (em¥g) | u(em¥e) | p(em¥e) | p (cm¥g) Counts

4.51 77 6.002 34.89 26.19 50.23 103.3
4.61 102 5.610 32.65 24.50 49.08 134.2
4.74 110 5.150 30.02 22.50 45.20 141.6
4.83 103 4.860 28.36 21.25 42.74 130.8
4.93 78 4.563 26.66 19.96 40.22 97.6

Table (1). Linear Attenuation Coefficients
Summing the Net Counts and the Corrected Counts in Table (1) resulted in a total

count of 607.5 and 470.0, respectively. Equation (14) was solved using the total Net

Count of 470.0 and the linear attenuation coefficients at the centroid energy given in Table

67




(1). A count of 605.1 resulted. This count of 605.1 was within 0.4% of the total
Corrected Counts of 607.5 obtained by summing the Corrected Counts in Table (1).

This turned out to be a very good approximation since the peaks were fitted with a
Gaussian distribution in which the mean energy is the peak value of the distribution.
Therefore, the peak centroid energies were used as the average energy across each peak in

determining the corrected areas, and ultimately, the PXR yields as shown in Appendix

B.

68




APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYA, 0.45 degree mosaic spread)

Angle Peak Number | Peak Center | Peak Energy | Width @ HM | Background
| (degrees)
(radians) (channel) (keV) (channels) {counts)
20.50 1 194.44 4.40 39.09 241.43
0.3580 2 403.29 8.51 70.41 381.03
Ag Peak 1096.94 22.17 33.54 96.31
21.00 1 196.87 4.45 30.38 408.33
0.3665 2 423.09 8.90 35.01 421.91
Ag Peak 1097.36 22.17 36.67 290.06
21.50 1 192.08 4.36 33.82 263.16
0.3752 2 424.61 8.93 32.37 224.87
3 660.94 13.59 46.14 281.40
Ag Peak 1090.51 22.04 37.4 170.45
22.00 1 192.56 4.61 37.06 230.13
0.3840 2 428.21 9.24 38.12 208.58
3 666.26 13.91 81.98 387.45
Ag Peak 1080.32 22.05 32.95 113.00
22.25 1 194.05 4.64 33.81 347.18
0.3883 2 433.63 9.34 36.35 349.91
3 674.42 14.07 33.77 303.27
4 917.04 18.84 52.00 433.14
Ag Peak 1081.34 22.07 37.07 292.44
22.50 1 211.24 4.74 33.93 402.47
0.3927 2 452.97 9.49 34.27 387.67
3 693.84 14.23 39.11 421.00
4 932.00 18.92 44.18 451.65
Ag Peak 1096.37 1 22.16 34.35 338.32
22.75 1 202.30 4.80 34.78 224.38
0.3970 2 445.84 9.58 32.47 193.83
3 686.71 14.32 37.40 205.44
4 933.78 19.17 46.40 232.20
Ag Peak 1084.76 22.14 33.98 159.90
23.25 1 207.48 4.90 33.60 313.29
0.4060 2 456.30 9.79 33.97 301.32
3 704.30 14.66 34.78 292.77
4 950.80 19.51 39.20 312.36
Ag Peak 1086.54 22.17 34.47 266.13
23.75 1 212.24 4.72 36.23 309.64
0.4150 2 461.75 9.65 36.31) 287.63
3 716.75 14.69 38.48 280.25
4 965.87 19.61 42.41 282.42
Ag Peak 1086.68 22.00 40.57 257.90
24.25 1 220.18 4.88 41.91 554.70
0.4230 2 480.06 10.01 42.90 528.69
3 732.07 14.99 47.41 542.36
Ag Peak 1088.89 22.04 38.43 391.53
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYA, 0.45 degree mosaic spread)

70

Angle Uncorrected Area Area Total Atten. Coef.
(degrees) Area Uncertainty | Uncertainty | Uncertainty (Crystal)
(counts) {counts) (percent) (percent) (cmzlg)
20.50 138.0 24.9 18.1 18.6 28.300
66.6 28.8 43.2 43.5 3.810
615.2 28.4 4.6 0.385
21.00 218.0 32.2 14.8 15.5 27.300
109.1 30.9 28.3 28.7 3.330
_ 804.8 37.2 4.6 0.385
21.50 259.4 28.0 10.8 12.3 29.100
101.4 23.5 23.2 23.9 3.300
71.8 25.2 35.1 35.6 1.030
499 1 29.0 5.8 0.388
22.00 658.9 33.5 5.1 7.6 24.500
514.8 30.5 5.9 8.2 2.980
271.3 32.3 11.9 13.2 0.971
469.1 26.4 5.6 0.388
22.25 1785.1 49.8 2.8 5.7 24.000
1657.5 48.6| 2.9 5.8 2.890
534.9 33.8 6.3 8.1 0.943
128.5 31.5 24.6 25.1 0.494
722.9 36.2 5.0 0.387
22.50 3626.9 66.6 1.8 4.6 22.500
4146.8 70.2 1.7 4.6 2.760
1735.7 50.8 2.9 5.2 0.917
600.2 38.8 6.5 7.7 0.490
943.8 40.3 4.3 0.385
22.75 2138.9 50.9 2.4 7.1 21.700
2455.4 53.3 2.2/ 7.1 2.690
1127.3 39.2 3.5 7.6 0.903
393.8 29.3 7.4 10.0 0.478
399.1 26.8 6.7 0.386
23.25 3322.1 62.8 1.9 6.0 20.300
4464.4 71.2 1.6 5.9 2.520
2019.9 51.0 2.5 6.2 0.853
735.6 36.9 5.0 7.6 0.462
592.1 33.5 5.7 0.385
23.75 1578.2 46.9 3.0 6.9 22.800
1704.1 47.7 2.8 6.8 2.630
710.4 35.6 5.0 8.0 0.849
247.8 28.5 11.5 13.1 0.458
515.2 32.1 6.2 0.389
24.25 1164.5 47.7 4.1 6.5 21.700
957.7 44.9 4.7 6.9 2.370
355.8 38.0 10.7 11.8 0.809
792.4 39.7 5.0 0.388
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYA, 0.45 degree mosaic spread)

Angle Cry. Abs. | Atten. Fact. | Atten. Coef. | Atten. Fact. | Atten. Coef. | Atten. Fact.
(degrees) | Length (Crystal) (Kapton) (Kapton) (Air) (Air)
(cm) (cm?/g) (cm?/g)

20.50 0.016 37.591 0.875 56.368 0.884
0.116 5.129 0.982 7.866 0.983

1.150 0.708 0.460 0.998 0.611 0.999

21.00 0.016 36.329 0.879 54.509 0.888
0.133 4,491 0.984 6.886 0.985

1.150 0.714 0.460 0.998 0.611 0.999

21.50 0.015 38.642 0.872 57.917 0.881
0.134 4.447 0.984 6.818 0.985

0.430 1.367 0.995 2.035 0.996

1.141 0.717 0.464 0.998 0.618 0.999

22.00 0.018 32.653 0.891 49.084 0.899
0.148 4.019 0.986 6.161 0.987

0.456 1.282 0.995 1.905 0.996

1.142 0.723 0.464 0.998 0.618 0.999

22.25 0.018 32.019 0.893 48.148 0.900
0.153 3.893 0.986 5.967 0.987

0.469 1.243 0.996 1.844 0.996

0.896 0.620 0.998 0.866 0.998

1.143 0.725 0.463 0.998 0.617 0.999

22.50 0.020 30.022 0.899 45.196 0.906
0.160 3.713 0.987 5.691 0.988

0.483 1.205 0.996 1.786 0.996

0.903 0.614 0.998 0.857 0.998

1.149 0.728 0.461 0.998 0.612 0.999

22.75 0.020 28.903 0.902 43.540 0.910
0.164 3.611 0.987 5.534 0.988

0.490 1.184 0.996 1.754 0.996

0.926 0.596 0.998 0.829 0.998

1.148 0.731 0.461 0.998 0.613 0.999

23.25 0.022 27.158 0.908 40,957 0.915
0.176 3.386 0.988 5.189 0.989

0.519 1.110 0.996 1.641 0.996

0.958 0.573 0.998 0.793 0.998

1.150 0.737 0.460 0.998 0.611 0.999

23.75 0.019 30.408 0.898 45.767 0.905
0.168 3.534 0.988 5.415 0.988

0.521 1.104 0.996 1.631 0.996

0.966 0.566 0.998 0.783 0.998

1.138 0.739 0.466 0.998 0.620 0.999

. 24.25 0.020 27.495 0.907 41.457 0.914
0.187 3.171 0.989 4.858 0.989

0.547 1.045 0.996 1.540 0.997

1.141 0.743 0.464 0.998 0.618 0.999
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYA, 0.45 degree mosaic spread)

Angle | Atten. Coef. | Atten. Fact. Total Detector | Corrected | Atten. Coef.
| (degrees) (Be) (Be) Atten. Fact. | Efficiency Area (Silver)
(cm?g) (counts) (cm?/g)
20.50 6.476 0.942 0.729 0.99] 191.2
0.964 0.991 0.957 1.00 69.6
0.212 0.998 0.995 0.90 687.0 13.908
21.00 6.255 0.944 0.737 0.99 298.8
0.863 0.992 0.962 1.00 113.4
0.212 0.998 0.995 0.90 898.7 13.908
21.50 6.661 0.940 0.723 0.99 362.5
0.856 0.992 0.962 1.00 105.4
0.368 0.997 0.987 1.00 72.7
0.213] - 0.998 0.995 0.90 557.3 14.130
22.00 5.610 0.949 0.760 0.99 875.9
0.786 0.993 0.966 1.00 533.1
0.353 0.997 0.988 1.00 274.5
0.213 0.998 0.995 0.90 523.9 14.113
22.25 5.499 0.950 0.764 0.99 2360.5
0.766 0.993 0.967 1.00 1714.6
0.345 0.997 0.988 1.00 541.2
0.240 0.998 0.994 0.97 133.3
0.213 . 0.998 0.995 0.90 807.2 14.079
22.50 5.150 0.954 0.777 0.99 4716.3
0.736 0.993 0.968 1.00 4283.2
0.338 0.997 0.989 1.00 1755.4
0.239 0.998 0.994 0.97 622.7
0.213 0.998 0.995 0.90 1053.9 13.925
22.75 4.954 0.955 0.784 1.00 2727.9
0.719 0.993 0.969 1.00 2534.0
0.334 0.997 0.989 1.00 1139.9
0.236 0.998 0.994 0.97 408.5
0.213 0.998 0.995 0.90 445.6 13.959
23.25 4.649 0.958 0.796 1.00 4175.3
0.681 0.994 0.971 1.00 4598.6
0.320 0.997 0.990 1.00 2041.1
0.231 0.998 0.994 0.96 770.7
0.212 0.998 0.995 0.90 661.2 13.908
23.75 5.217 0.953 0.774 0.99 2058.8
0.706 0.993 0.970 1.00 1757.5
0.319 0.997 0.990 1.00 717.8
0.230 0.998 0.994 0.96 259.7
0.213 0.998 0.995 0.90 575.3 14.200
24.25 4.780 0.957 0.793 1.00 1468.7
0.645 0.994 0.973 1.00 984.7
0.307 0.997 0.990 1.00 359.3
0.213 0.998 0.995] . 0.90 884.8 14.130
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYA, 0.45 degree mosaic spread)

Angle Eff. Thick. | Peak Yield Peak Yield | Experiment | Calculated
(degrees) (Silver) Uncertainty Intensity Intensity
{cm) (phot/elec) | (phot/elec) Ratios Ratios
20.50 7.27E-09 1.36E-09 1.000 1.000
2.65E-09 1.15E-09 0.364 0.648
0.00682
21.00 8.75E-09 1.35E-09 1.000 1.000
3.32E-09 9.52E-10 0.379 0.665
0.00682
21.50 1.69E-08 2.08E-09 1.000 1.000
4.92E-09 1.17E-09 0.291 0.711
3.39E-09 1.21E-09 0.200 0.289
0.00671
22.00 4.39E-08 3.32E-09 1.000 1.000
2.67E-08 2.18E-09 0.609 0.625
1.37E-08 1.81E-09 0.313 0.246
0.00671
22.25 7.72E-08 4.42E-09 1.000 1.000
5.60E-08 3.25E-09 0.726 0.619
1.77E-08 1.43E-09 0.229 0.242
4.36E-09 1.09E-09 0.056 0.109
0.00673
22.50 1.20E-07 5.56E-09 1.000 1.000
1.09E-07 4.99E-09 0.908 0.591
4.46E-08 2.30E-09 0.372 0.228
1.58E-08 1.22E-09 0.132 0.102
0.00680 ,
22.75 1.64E-07 1.17E-08 1.000 1.000
1.52E-07 1.08E-08 0.929 0.576
6.86E-08 5.19E-09 0.418 0.220
v 2.46E-08 2.46E-09 0.150 0.099
0.00678
23.25 1.71E-07 1.02E-08 1.000 1.000
1.88E-07 1.11E-08 1.101 0.551
8.36E-08 5.18E-09 0.489 0.207
3.16E-08 2.39E-09 0.185 0.093
0.00680
- 23.75 9.52E-08 6.57E-09 1.000 1.000
8.13E-08 5.55E-09 0.854 0.610
3.32E-08 2.66E-09 0.349 0.233
1.20E-08 1.57E-09 0.126 0.104
0.00666
24.25 4.46E-08 2.89E-09 1.000 1.000
2.99E-08 2.05E-09 0.670 0.601
1.09E-08 1.29E-09 0.245 0.223
0.00668
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYD, 1.31 degree mosaic spread)

74

Angle Peak Number | Peak Center | Peak Energy | Width @ HM | Background
(degrees)
(radians) (counts) (keV) (channels) (counts)
20.50 1 132.19 3.29 231.79 1266.03
0.3580 Ag Peak 1086.39 21.78 33.10 180.79
21.00 1 199.17 4.59 41.41 378.14
0.3670 2 435.90 9.17 57.69 482.12
3 684.54 13.99 42.98 324.22
_Ag Peak 1086.56 21.79 33.30 207.39
21.50 1 197.40 4.55 38.29 267.17
0.3750 2 440.27 9.26 46.90 299.70
3 684.09 13.98 75.96 440.62
Ag Peak 1086.06 21.78 34.03 164.32
22.00 1 201.84 4.64 34.76 307.81
0.3840 2 442.23 9.30 42.33 353.94
3 684.25 13.99 51.17 402.42
4 932.90 18.81 48.36 355.62
Ag Peak 1085.02 21.76 34.07 239.89
22.25 1 222.63 5.00 40.52 348.94
0.3880 2 465.24 9.69 43.57 356.94
3 707.02 14.37 47.18 366.80
4 952.03 19.12 41.01 301.47
Ag Peak 1099.39 21.97 38.76 275.06
22.50 1 203.51 4.67 34.20 260.30
0.3930 2 446.76 9.38| 38.03 272.28
3 690.81 14.11 42.89 287.64
4 936.90 18.90 43.77 273.55
Ag Peak 1086.45 21.78 32.32 193.02
22.75 1 205.60 4.67 43.14 277.95
0.3970 2 452.39 9.44 48.39 293.84
3 700.74 14.25 49.63 282.86
4 945.87 19.00 46.33 246.99
Ag Peak 1083.98 21.65 38.18 195.62
23.25 1 206.39 4.68 32.82 231.90
0.4060 2 455.64 9.51 36.45 239.20
3 704.63 14.33 40.68 246.50
4 956.72 19.21 59.27 328.96
Ag Peak 1083.10 21.65 28.87 152.87
23.75 1 210.07 4.75 40.25 326.38
0.4150 2 462.66 9.64 42.32 314.75
3 703.24 14.30 51.39 349.35
Ag Peak 1081.93 21.63 31.12 180.23
24.25 1 211.88 4.79 57.89 359.50
0.4230 2 468.91 9.76 49.81 309.32
' 3 695.95 14.16 173.50 1077.43
Ag Peak 1085.02 21.69 32.38 201.08
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYD, 1.31 degree mosaic spread)

Angle Uncorrected Area Area Total Atten. Coef.
(degrees) Area Uncertainty | Uncertainty | Uncertainty (Crystal)
(counts) (counts) {percent) (percent) (cmzlg)
20.50 657.8 56.5 8.6 10.5 68.400
488.3 29.2 6.0 0.394
21.00 557.5 36.2 6.5 8.4 24.800
407.8 37.0 9.1 10.6 ~3.050
123.2 27.8 22.5 23.2 0.957
591.0 31.7 5.4 0.394
21.50 702.6 35.2 5.0 8.3 25.500
659.5 35.5 5.4 8.5 2.970
357.2 35.2 9.9 11.9 0.958
410.7 27.2 6.6 0.394
22.00 1749 .1 48.6 2.8 6.5 24.000
1919.7 51.3 2.7 6.4 2.930
845.2 40.6 4.8 7.6 0.957
333.1 32.3 9.7 11.3 0.495
550.9 32.1 5.8 0.395
22.25 1437.5 46.2 3.2 9.5 19.100
1725.9 49.4 2.9 9.4 2.600
788.2 39.0 4.9 10.2 0.896
302.6 30.1 9.9 13.4 0.480
331.6 29.7 9.0 0.390
22.50 2208.3 52.2 2.4 6.4 23.600
2752.8 57.4 2.1 6.3 2.860
1264.4 42.9 3.4 6.9 0.937
518.8 32.6 6.3 8.7 0.491
496.8 29.7 6.0 ' 0.394
22.75 1538.3 45.8 3.0 8.7 23.600
2312.5 53.9 2.3 8.5 2.800
1063.8 40.4 3.8 9.0 0.914
394.6 29.8 7.6 11.1 0.486
328.8 26.8 8.2 0.397
23.25 1169.9 40.4 3.5 8.7 23.400
1450.1 43.9 3.0 8.6 2.740
720.4 34.8 4.8 9.4 0.902
293.1 30.8 10.5 13.2 0.476
308.8 24.8 8.0 0.397
23.75 733.4 37.2 5.1 9.1 22.400
700.2 36.5 5.2 9.2 2.640
344.5 32.3 9.4 12.0 0.906
353.3 26.7 7.6 0.398
24.25 635.9 36.8 5.8 10.0 21.800
396.8 31.9 8.0 11.4 2.550
343.8 50.0 14.5 16.6 0.929
334.7 27.1 8.1 0.396
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYD, 1.31 degree mosaic spread)
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Angle Cry. Abs. | Atten. Fact. | Atten. Coef. | Atten. Fact. | Atten. Coef. | Atten. Fact.
(degrees) | Length (Crystal) (Kapton) (Kapton) (Air) (Air)
(cm) (cm?/g) (cm?/g)
20.50 0.006 89.938 0.727 132.280 0.750
1.123 0.656 0.473 0.998 0.632 0.999
21.00 0.018 33.084 0.889 49.721 0.897
0.145 4.110 0.986 6.301 0.986
0.462 1.262 0.996 1.874 0.996
1.124 0.663 0.473 0.998 0.632 0.999
21.50 0.017 33.971 0.886 51.030 0.895
0.149 3.993 0.986 6.121 0.987
0.462 1.265 0.996 1.878 0.996
1.123 0.668 0.473 0.998 0.632 0.999
22.00 0.018 32.019 0.893 48.148 0.900
0.151 3.943 0.986 6.043 0.987
0.462 1.262 0.996 1.847 0.996
0.894 0.622 0.998 0.869 0.998
1.121 0.674 0.474 0.998 0.634 0.999
22.25 0.023 25.550 0.913 38.574 0.919
0.170 3.491 0.988 5.349 0.988
0.494 1.173 0.996 1.737 0.996
0.922 0.600 0.998 0.834 0.998
1.136 0.680 0.467 0.998 0.622 0.999
22.50 0.019 31.402 0.895 47.236 0.902
0.155 3.844 0.986 5.891 0.987
0.472 1.233 0.996 1.829 0.996
0.901 0.615 0.998 0.859 0.998
1.123 0.680 0.473 0.998 0.632 0.999
22.75 0.019 31.402 0.895 47.236 0.902
0.158 3.772 0.987 5.781 0.987
0.484 1.200 0.996 1.778 0.996
0.910 0.608 0.998 0.848 0.998
1.114 0.680 0.478 ~ 0.998 0.640 0.999
23.25 0.019 3.120 0.989 46.937 0.903
0.161 3.690 0.987 5.656 0.988
0.491 1.182 0.996 1.750 0.996
0.930 0.593 0.998 0.825 0.998
- 1.114 0.686 0.478 0.998 0.640 0.999
23.75 0.020 29.831 0.900 44.914 0.907
0.168 3.545 0.987 5.432 0.988
0.488 1.189 0.996 1.415 0.997
: 1.112 0.691 0.478 0.998 0.641 0.999
24.25 0.020 29.085 0.902 - 35.790 0.925
0.174 3.417 0.988 4.171 0.991
0.476 1.221 0.996 1.455 0.997
1.117 0.696 0.476 0.998 0.637 0.999
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYD, 1.31 degree mosaic spread)

Angle Atten. Coef. | Atten. Fact. Total Detector Corrected | Atten. Coef.
(degrees) (Be) (Be) Atten. Fact. | Efficiency Area (Silver)
(cm?g) (counts) (cm?/g)
20.50 15.959 0.863 0.470 0.97 1442.7
0.215 0.998 0.995 0.92 533.5 14,589
21.00 5.686 0.949 0.757 0.99 743.9
0.801 0.993 0.965 1.00 422.6
0.349 0.997 0.988 1.00 124.7
0.215 0.998 0.995 0.92 645.6 14.571
21.50 5.841 0.947 0.751 0.99 944 .4
0.782 0.993 0.966 1.00 682.8
0.349 0.997 0.988 1.00 361.5
0.215 0.998 0.995 0.92 448.7 14,589
22.00 5.499 0.950 0.764 0.99 2312.9
0.774 0.993 0.966 1.00 1986.7
0.349 0.997 0.988 1.00 855.2
0.241 0.998 0.994 0.97 345.6
0.215 0.998 0.995 0.92 601.8 14.625
22.25 4.369 0.960 0.806 1.00 1782.4
0.699 0.994 0.970 1.00 1779.4
0.332 0.997 0.989 1.00 797.0
0.236 0.998 0.994 0.96 317.2
0.214 0.998 0.995 0.90 370.3 14.252
22.50 5.391 0.951 0.768 0.99 2905.1
0.758 0.993 0.967 1.00 2846.5
0.343 0.997 0.989 1.00 1279.1
0.239 0.998 0.994 0.96 543.8
0.215 0.998 0.995 0.92 542.7 14.589
22.75 5.391 0.951 0.768 0.99 2023.6
0.746 0.993 0.968 1.00 2389.7
0.337 0.997 0.989 1.00 1075.9
0.238 0.998 0.994 0.96 413.5
0.215 0.998 0.995 0.93 355.3 14.827
23.25 5.356 0.952 0.850 0.99 1390.7
0.732 0.993 0.968 1.00 1497.5
0.334 0.997 0.989 1.00 728.4
0.235 0.998 0.994 0.96 307.2 ,
0.215 0.998 0.995 0.93 333.7 14.827
23.75 - 5.116 0.954 0.778 0.99 952.1 '
0.708 0.993 0.970 1.00 722.2
0.335 0.997 0.990 1.00 348.1
0.215 0.998 0.995 0.93 381.8 14.864
. 24.25 4.986 0.955 0.797 0.99 806.3
0.687 0.994 0.973 1.00 407.8
0.341 0.997 0.989 1.00 347.5
0.215 0.998 0.995 0.93 361.7 14,7583
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APPENDIX B. TABLES OF PXR MEASUREMENTS

(ZYD, 1.31 degree mosaic spread)

Angle Eff. Thickness | Peak Yield Peak Yield Experiment | Calculated
(degrees) {Silver) Uncertainty Intensity Intensity
{cm) (phot/elec) | (phot/elec) Ratios Ratios
20.50 6.24E-08 6.53E-09 1.000 1.000
0.00651
21.00 2.69E-08 2.27E-09 1.000
1.53E-08 1.61E-09 0.568 0.693
4.51E-09 1.04E-09 0.168 0.289
0.00651
21.50 4.94E-08 4.10E-09 1.000 1.000
3.57E-08 3.05E-09 0.723 0.721
1.89E-08 2.25E-09 0.383 0.298
0.00650
22.00 9.08E-08 5.86E-09 1.000 1.000
7.80E-08 5.00E-09 0.859 0.683
3.36E-08 2.54E-09 0.370 0.280
1.36E-08 1.54E-09 0.149 0.128
0.00648
22.25 1.18E-07 1.12E-08 1.000 1.000
1.17E-07 1.10E-08 0.998 0.572
5.26E-08 5.38E-09 0.447 0.225
: 2.09E-08 2.80E-09 0.178 0.102
0.00665
22.50 1.28E-07 8.22E-09 1.000 1.000
1.25E-07 7.93E-09 0.980 0.679
5.63E-08 3.87E-09 0.440 0.276
2.39E-08 2.08E-09 0.187 0.126
0.00649
22.75 : 1.34E-07 1.16E-08 1.000 1.000
1.58E-07 1.34E-08 1,181 0.685
7.12E-08 6.41E-09 0.532 0.278
2.74E-08 3.04E-09 0.204 0.126
0.00639
23.25 9.87E-08 8.63E-09 1.000 1.000
1.06E-07 9.12E-09 1.077 0.685
5.17E-08 4.85E-09 0.524 0.276
2.18E-08 2.89E-09 0.221 0.126
0.00639
23.75 5.93E-08 5.40E-09 1.000 1.000
4.50E-08 4.13E-09 0.759 0.667
2.17E-08 2.61E-09 0.366 0.264
0.00637
24.25 5.38E-08 5.36E-09 1.000 1.000
2.72E-08 3.11E-09 0.506 0.658
: 2.32E-08 3.86E-09 0.431 0.256
0.00641
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYH, 2.5 degree mosaic spread)

- 79

Angle Peak Number | Peak Center | Peak Energy | Width @ HM | Background
(degrees)
(radians) (channel) (keV) (channels) (counts)

20.50 1 174.71 3.98 121.20 862.66

0.3578 Ag Peak 1088.87 22.04 37.57 267.41

21.00 1 196.14 4.56 38.92 392.72

0.3665 2 443.51 9.41 58.40 523.90

3 692.90 14.29 67.49 529.26

Ag Peak 1090.63 22.08 32.13 194.13

21.50 1 203.17 4.70 37.24 276.78

0.3752 2 440.56 9.35 40.60 268.73

3 691.88 14.27 42.94 247.25

4 917.40 18.69 24.19 120.59

Ag Peak 1087.89 22.03 40.31 177.41

22.00 1 203.75 4.71 35.13 458.36

0.3840 2 446.72 9.47 40.97 487.52

3 691.01 14.25 43.13 463.43

4 934.60 19.02 33.72 323.50

Ag Peak 1085.63 21.98 42.44 376.86

22.25 1 203.64 4.71 35.11 277.33

0.3883 2 446.86 9.47 37.91 267.99

3 690.20 14.24 47.57 296.78

4 933.98 19.01 35.14 190.00

Ag Peak 1084.04 21.95 33.82 165.55

22.50 1 206.86 4.61 38.85 364.63

0.3927 2 450.77 9.43 42.51 398.98

3 695.39 14.27 54.79 514.23

4 935.76 19.02 52.26 490.48

Ag Peak 1090.24 22.07 35.37 331.96

22.75 1 204.60 4.73 41.39 275.86

0.3971 2 450.46 9.54 43.36 288.99
3 694.20 14.32 44.82 298.72|

4 937.07 19.07 44.50 296.58

Ag Peak 1084.40 21.96 35.86 239.00

23.25 1 193.35 4.56 34.05 679.70

0.4058 2 434.24 9.31 47.24 852.62

3 687.47 14.32 77.59 1244.35

Ag Peak 1083.02 22.13 34.37 443.24

23.75 1 199.89 4.69 33.75 416.14

0.4145 2 441.29 9.45 43.22 489.68

3 683.14 14.23 43.86 453.00

Ag Peak 1085.47 22.18 26.54 229.89

24.25 1 199.22 4.67 34.71 240.73

0.4232 2 445.95 9.55 39.61 253.53

3 687.38 14.31 38.79 227.98

Ag Peak 1085.65 22.18 31.18 156.33
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYH, 2.5 degree mosaic spread)

Angle Uncorrected Area Area Total Atten. Coef.
Area Uncertainty | Uncertainty | Uncertainty (Crystal)
(degrees) {(counts) {counts) (percent) (percent) (cmzlj)
20.50 589.3 48.1 8.2 10.3 38.400
513.4 32.4 6.3 0.388
21.00 368.9 34.0 9.2 11.0 25.300
340.1 37.3 11.0 12.5 2.830
141.6 34.6 24.5 25.2 0.908
498.6 29.8 6.0 0.387
21.50 471.5 32.0 6.8 10.3 23.100
334.7 29.5 8.8 11.7 2.880
133.0 25.1 18.8 20.4 0.911
57.9 17.3 29.9 30.9 0.501
341.3 26.4 7.7 0.388
22.00 1730.1 51.4 3.0 7.2 22.900
1773.7 52.4 3.0 7.2 2.780
721.5 40.6 5.6 8.6 0.914
190.3 28.9 15.2 16.6 0.485
550.9 36.1 6.6 0.389
22.25 1290.6 43.0 3.3 8.6 22.900
1459.9 44.7 3.1 8.5 2.780
681.8 35.7 5.2 9.5 0.916
160.7 23.3 14.5 16.5 0.485
321.4 25.5 7.9 0.390
22.50 2068.3 52.9 2.6 8.0 24.500
2136.6 54.2 2.5 8.0 2.810
971.0 44.7 4.6 8.8 0.911
280.0 35.5 12.7 14.8 0.485
440.5 33.2 7.5 0.387
22.75 2357.2 53.9 2.3 8.2 22.700
2967.8 59.5 2.0 8.1 2.720
1216.1 42.6 3.5 8.6 0.903
473.6 32.7 6.9 10.4 0.482
372.3 29.2 7.8 0.390
23.25 924.9 47.8 5.2 6.6 25.300
712.5 49.2 6.9 8.1 2.920
270.9 52.5 19.4 19.8 0.903
1065.2 44.2 4.1 0.386
23.75 799.0 40.4 5.1 7.8 23.200
755.0 41.6 5.5 8.1 2.800
295.2 34.7 11.7 13.2 0.917
527.7 31.4 6.0 0.385
24.25 808.6 35.9 4.4 9.7 23.600
877.8 37.2 4.2 9.6 2.710
279.4 27 .1 9.7 13.0 0.905
284.0 24.4 8.6 0.385
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYH, 2.5 degree mosaic spread)

Angle Cry. Abs. | Atten. Fact. | Atten. Coef. | Atten. Fact. | Atten. Coef. | Atten. Fact.
Length (Crystal) (Kapton) (Kapton) (Air) (Air)
(degrees) (cm) (cm?/g) (cm?/g)
20.50 0.012 50.889 0.835 75.904 0.848
1.141 0.639 0.464 0.998 0.618 0.999
21.00 0.017 33.746 0.887 50.698 0.895
0.156 3.808 0.987 5.836 0.987
0.487| 1.191 0.996 1.764 0.996
1.144 0.646 0.463 0.998 0.616 0.999
21.50 0.019 30.800 0.896 46.347 0.904
0.154 3.880 0.986 5.948 0.987
0.486 1.195 0.996 1.771 0.996
0.883 0.631 0.998 0.884 0.998
1.140 0.652 0.465 0.998 0.619 0.999
22.00 0.019 30.603 0.897 46.056 0.905
0.159 3.737 0.987 5.727 0.988
0.484 1.200 0.996 1.778 0.996
0.912 0.607 0.998 0.845 0.998
1.137 0.657 0.466 0.998 0.621 0.999
22.25 0.019 30.603 0.897 46.056 0.905
0.159 3.737 0.987 5.727 0.988
0.483 1.202 0.996 1.782 0.996
0.912 0.607 0.998 0.847 0.998
1.135 0.659 0.467 0.998 0.623 0.999
22.50 0.018 32.653 0.891 49.084 0.899
0.157 3.784 0.987 5.799 0.987
0.486 1.195 0.996 1.771 0.996
0.912 0.607 0.998 0.845 0.998
1.143 0.664 0.463 0.998 0.617 0.999
22.75 0.019 30.214 0.898 45.480 0.906
0.163 3.656 0.987 5.621 0.988
0.490 1.184 0.996 1.754 0.996
0.918 0.603 0.998 0.840 0.998
1.135 0.665 0.467 0.998 0.623 0.999
23.25 0.017 33.746 0.887 50.698 0.895
0.152 3.930 0.986 6.024 0.987
0.490 1.184 0.996 1.754 0.996
: 1.147 0.674 0.461 0.998 0.613 0.999
23.75 0.019 30.999 0.896 46.641 0.903
0.158 3.760 0.987 5.763 0.988
0.483 1.205 0.996 1.786 0.996
1.151 0.680 0.460 0.998 0.611 0.999
24.25 0.019 31.402 0.895 " 47.236 0.902
0.163 3.645 0.987 5.585 0.988
0.489 1.186 0.996 1.757 0.996
1,151 0.685 0.460 0.998 0.611 0.999
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYH, 2.5 degree mosaic spread)

Atten. Coef.

Angle Atten. Coef. | Atten. Fact. Total Detector | Corrected
(Be) (Be) Atten. Fact. | Efficiency Area (Silver)
(degrees) | (cm?qg) (counts) | (cm?g)
20.50 8.821 0.922 0.481 0.98 922.0
0.213 0.998 0.992 0.90 573.3 14.130
21.00 5.802 0.948 0.613 0.99 494.9
0.752 0.993 0.945 1.00 351.5
0.336 0.997 0.983 1.00 143.2
0.213 0.998 0.992 0.90 556.7 14.061
21.50 5.286 0.952 0.640 0.99 617.2
0.764 0.993 0.944 1.00 346.2
0.336 0.997 0.983 1.00 134.5
0.242 0.998 0.991 0.97 60.0
0.213 0.998 0.992 0.90 381.1 14.147
22.00 5.251 0.953 0.641 0.99 2260.8
0.740 0.993 0.946 1.00 1832.4
0.337 0.997 0.983 1.00 729.7
0.238 0.998 0.991 0.98 195.4
0.213 0.998 0.992 0.90 615.1 14.234
22.25 5.251 0.953 0.641 0.99 1686.5
0.740 0.993 0.946 1.00 1508.2
0.338 0.997 0.982 1.00 689.5
0.238 0.998 0.991 0.98 165.0
0.214 0.998 0.992 0.90 358.9 14.287
22.50 5.610 0.949 0.623 0.99 2749.6
0.748 0.993 0.945 1.00 2208.3
0.336 0.997 0.983 1.00 981.9
0.238 0.998 0.991 0.98 287.5
0.213 0.998 0.992 0.90 491.8 14.079
22.75 5.183 0.953 0.645 0.99 3070.2
0.727 0.993 0.947 1.00 3064.1
0.334 0.997 0.983 1.00 1229.6
0.237 0.998 0.991 0.98 486.3
0.214 0.998 0.992 0.90 415.8 14.269
23.25 5.802 0.948 0.613 0.99 1240.8
0.772 0.993 0.943 1.00 737.3
0.334 0.997 0.983 1.00 273.9
0.213 0.998 0.992 0.90 1189.4 13.976
23.75 5.821 0.952 0.638 0.99 1047.5
0.744 0.993 0.946 1.00 780.2
0.338 0.997 0.982 1.00 298.6
0.212 0.998 0.992 0.90 589.3 13.891
24.25 5.391 0.951 0.634 0.99 1063.7
0.725 0.993 0.947 1.00 906.2
0.335 0.997 0.983 1.00 282.5
0.212 0.998 0.992 0.90 317.1 13.891
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APPENDIX B. TABLES OF PXR MEASUREMENTS
(ZYH, 2.5 degree mosaic spread)

Angle Eff. Thick. | Peak Yield Peak Yield Experiment | Calculated
(Silver) Uncertainty Intensity Intensity
(degrees) (cm) (phot/elec) | (phot/elec) Ratios Ratios
20.50 3.73E-08 3.85E-09 1.000 1.000
0.00672
21.00 2.10E-08 2.30E-09 1.000 1.000
1.49E-08 1.86E-09 0.710 0.762
6.06E-09 1.53E-09 0.289 0.317
0.00674
21.50 3.82E-08 3.93E-09 1.000 1.000
2.15E-08 2.52E-09 0.561 0.690
8.33E-09 1.70E-09 0.218 0.289
: 3.72E-09 1.15E-09 0.097 0.132
0.00670
22.00 8.69E-08 6.26E-09 1.000 1.000
7.04E-08 5.07E-09 0.811 0.695
2.81E-08 2.42E-09 0.323 0.287
7.51E-09 1.24E-09 0.086 0.131
0.00666
22.25 1.11E-07 9.57E-09 1.000 1.000
9.94E-08 8.46E-09 0.894 0.695
4.54E-08 4.32E-09 0.409 0.287
1.09E-08 1.79E-09 0.098 0.131
0.00663
22.50 1.35E-07 1.08E-08 1.000 1.000
1.08E-07 8.63E-09 0.803 0.740
4.82E-08 4.26E-09 0.357 0.307
1.41E-08 2.08E-09 0.105 0.141
0.00672;
22.75 1.76E-07 1.44E-08 1.000 1.000
1.76E-07 1.42E-08 0.998 0.696
7.06E-08 6.06E-09 0.401 0.285
2.79E-08 2.91E-09 0.158 0.130
0.00663 .
23.25 2.57E-08 1.70E-09 1.000 1.000
1.53E-08 1.23E-09 0.594 0.750
5.68E-09 1.13E-09 0.221 0.317
0.00676
23.75 4.44E-08 3.47E-09 1.000 1.000
3.31E-08 2.69E-09 0.745 0.702
1.27E-08 1.67E-09 0.285 0.290
0.00680
24.25 8.44E-08 8.17E-09 1.000 1.000
- 7.19E-08 6.89E-09 0.852 0.725
) 2.24E-08 2.91E-09 0.266 0.296
0.00679 :
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